Dislocations in cubic crystals described by discrete models
نویسنده
چکیده
Discrete models of dislocations in cubic crystal lattices having one or two atoms per unit cell are proposed. These models have the standard linear anisotropic elasticity as their continuum limit and their main ingredients are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the dislocation size. For these models, conservative and damped equations of motion are proposed. In the latter case, the entropy production and thermodynamic forces are calculated and fluctuation terms obeying the fluctuation-dissipation theorem are added. Numerical simulations illustrate static perfect screw and 60 dislocations for GaAs and Si.
منابع مشابه
Discrete Crystal Elasticity and Discrete Dislocations in Crystals
This article is concerned with the development of a discrete theory of crystal elasticity and dislocations in crystals. The theory is founded upon suitable adaptations to crystal lattices of elements of algebraic topology and differential calculus such as chain complexes and homology groups, differential forms and operators, and a theory of integration of forms. In particular, we define the lat...
متن کاملAtomic Models of Dislocations for Si and Gaas
An atomic model of dislocations in face centered cubic crystals with a twoatom basis is proposed. This model has the standard cubic anisotropic elasticity as its continuum limit, and its main ingredients are the elastic stiffness constants and a dimensionless periodic function that restores the translation invariance of the crystal and influences the dislocation size. Possible applications incl...
متن کاملDiscrete Crystal Plasticity
This article is concerned with the development of a discrete theory of crystal elasticity and dislocations in crystals. The theory is founded upon suitable adaptations to crystal lattices of elements of algebraic topology and differential calculus such as chain complexes and homology groups, differential forms and operators, and a theory of integration of forms. In particular, we define the lat...
متن کاملProceedings of the 9 th Biennial ASME Conference on Engineering Systems Design and Analysis ESDA 2008 July 7 - 9 , 2008 , Haifa , Israel ESDA 2008 - 59117 IN - SITU INVESTIGATION of PLASTICITY at NANO - SCALE
Mechanical behavior of crystals is dictated by dislocation motion in response to applied force. While it is extremely difficult to directly observe the motion of individual dislocations, several correlations can be made between the microscopic stress-strain behavior and dislocation activity. Here, we present for the first time the differences observed between mechanical behavior in two fundamen...
متن کاملMicrostructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals
Three newly identified cross-slip mechanisms from atomistic simulations of fcc crystals, namely surface, bulk and intersection cross-slip types, were hierarchically informed into discrete dislocation dynamics simulations. The influence of each cross-slip type on the evolution of the dislocation microstructure in face-centered cubic microcrystals having different crystal sizes and initial disloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006